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Correlated-data-driven dynamics in a neural network
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Effects of correlations among the embedded patterns on dynamics in a neural network are studied.
Combined with a delay of signal transmission, the correlations are shown to give rise to a time sequence

of patterns.
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A number of neural network models have been pro-
posed to explain some properties of the nervous system in
terms of the formal two-state neurons [1]. In the
Hopfield model [2] with N neurons, the symmetric con-
nection J;; between the neurons i and j is expressed as

L=y See, m
n

where &' (==x1) (u=1,...,p; i=1,...,N) denotes the
state of the neuron i in the uth pattern. The postsynaptic
potential (PSP) or the field strength h;(¢) at the neuron i
is expressed as

h(t)= EJiij(t)= > §{-‘m,,(t) , (2)
J |7

where the overlap m () with the uth pattern is defined
by

m#m=% 3 ES,(0) . 3)

The collective behavior of the network with a symmetric
connection such as Eq. (1) is represented as a relaxation
process toward the local minimum of the (free) energy
and the model works as content-addressable or associa-
tive memories [2].

Recently issues of temporal association in neural net-
works have gathered considérable attention [3-7]. To
effect transitions between patterns, a certain amount of
asymmetry of the connection Jj; is required. After the
proposal suggested by Hopfield [2], some models have
been put forth in which delay in signal transmission is in-
troduced to yield, e.g.,

hi()=3 &m (O+e & m, (t—1) . @)
u Iz

For later convenience we briefly consider the transition
mechanism within the framework of asynchronous dy-
namics [6]. We suppose that the system has been in the
pattern v for 0=t <7. As for m,(¢t—7) in Eq. (4), we can
set m,(t—71)=C,, for 7=t <27, where the correlation
C, between the patterns u and p’ is defined by

1 .
Cow= N ; EHEL . ()

If we consider a network in which the correlations vanish
on average, that is,
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and neglect fluctuations in C,,; of order 1/ V'N, we have
m,(t—71)=3,, for 7=t <27. If € is chosen to be larger
than 1 and 7 sufficiently longer than one cycle time [or
one Monte Carlo time (MCT) in which N neurons are up-
dated], we see that m, (¢) increases until it becomes 1
at about t=~7+tycp. During the time other overlaps
m,(t) (u7v+1) decrease to zero. Thus after the pattern
v, the pattern v+1 is retrieved, then the pattern v+2,
and so on. It should be noted that once m,, (?) becomes
large the first term on the right-hand side (rhs) of Eq. (4)
contributes to the stabilization of the pattern v+ 1.

The model (4) and the modifications thereof have been
successful in producing a pattern sequence [3-5]. We
note, however, that the correlations among patterns C o
(u7p') are assumed to be zero, Eq. (6), in order to enable
the network to retrieve the prescribed sequence
v,v+1,... . Putting the model (4) aside for a while, we
consider what happens when there are strong correlations
among patterns in a network (brain). If the network is in
a state (pattern) A and the pattern B alone is strongly
correlated with the pattern A4, it is expected that a spon-
taneous transition, if it occurs, is to the state B. That is,
one can conceive that the internal correlations among the
embedded patterns (data) can give rise to spontaneous or
data-driven transitions. The purpose of this Brief Report
is to present and investigate a model which materializes
the notion above.

Our model consists of the PSP given by

hi(t)= Y e, &im,()+ 3 szg‘,-‘m“(t)mv(t~1') . D

[ v
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The correlations C 1y defined by Eq. (6) now take nonzero
values. Qualitatively the second (transition) term on the
rhs of Eq. (7) is interpreted as follows: When the network
is in the pattern v, for 0=t <7, m (t—7) in Eq. (7) is
CWl for 7<t <27. In the summation over v in Eq. (7) the

largest contribution comes from the term v=wv, since
CWl =1 for v=v,. By [v,] let us denote the pattern (<v,)
which is most strongly correlated with the pattern v,.
Now for ¢ slightly larger than 7 (¢ = 7), m,(¢) in Eq. (7) is
nearly equal to Cwl. Since p must be different from v,,

the largest contribution in the summation over pu comes
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from the term u=[v,] and the PSP tends to drive the sys-
tem toward the state [v;]. Once this transition is initiat-
ed, the first term also begins supporting the transition.
Of course this is a drastically simplified scenario and
more quantitative argument is necessary to understand
the transition mechanism in Eq. (7).

For the purpose we confine ourselves to the case where
only three patterns A4, B, and C are embedded in the net-
work. The PSP is explicitly written as

hi()=[e m +elym ((mp+c)E!

+[egmptepmp(m 4 +m)]EE

+lecmetelmo(m +7ig)]EC, (8)
where €, and EZ (u=A,B,C) are assumed to be positive
and m 4 and 7 4 denote m 4(t) and m 4(t —7), respective-

ly. Suppose that at =0 the system is in a state 4 and
the PSP at the neuron i becomes

hi(o):F/AgiA+EBCAB§1'B+5CCAC§1'C > 9

where the transition term in Eq. (7) is regarded to be
effective after t =7. If

€,2€epC ptecCyc, (10)

the system remains in the state 4 until 1 =7. At t=r, the

hg>h, and hp>h; . (12)

Under the condition (12), if £§/=¢£5, S, (=£4) is un-
changed and if £8=£554£7, S; flips from £/ to —&/=¢£5.
Since we do not require hz > h 4+ h¢, which is too severe
a condition to be satisfied, when £/=£F4E5, it seems
that the transition from S;=£7 to &2 is not assured.
However, as explained above, in the process of asynchro-
nous updating, S;(¢) takes the value £2 except for the
neuron site, where £/1=££2 and the coalition of A and
C patterns resists the transition to the state B. At this
point let us express the fraction Z of the coalition sites in
terms of the correlations. If X, Y, Z,and (1—-X —Y —2)
denote the fractions of neuron sites at which £/1=¢£8=¢€
Ef=ElHEl, £ =E7FEP, and EP=E(#E]", respectively,
we have

Cpp=2X+Y)—1,
Cuc=20X+2Z)—1, (13)
Cpc=1-2(Y+2Z).

These equations lead to

Z:(1+CAC‘—CBC_CAB)/4' (14)

PSP is given by Eq. (8) by setting m,=C, ,=m,. Ex- From the discussions above we see that the overlap my
plicitly it reads as increases from C,p at time t=7 to mp=1—2Z=(1
hi(t)z[EA +€£(CAB +CAC)]§1A +CBC+CAB_CAC)/2 at-t=T+lMCT and the system ap-
proaches the state B considerably as exemplified later by
+[epC p+e5C 5 (1+C o) ]EE our numerical simulation. We now write the conditions
to be satisfied in order to keep the state B after
T c

tlecCactecCic(1+Cyp)lE t =1+1tycr, Eq. (15), to effect the transition to the state
=h EA+hpEB+ R EC . 11 C after t=27, Eq. (16), to keep the state C after
t=27+tycr Eq. (17), and finally to keep the state C for-

We now require that ever (t > 37), Eq. (18):

J

egtepterCuc>e Cp+el(Cup P +eliCupC ctecChct+elCpctelCpcCyp (15)
ecCpeT€(C45Chc+elChe > ,Capt+eliCap+eCpCpc , €5 +efCap+efCpc (16)
ec+etCuptel>e, CucteliCuctelC cCpctesCpetelCocC p+eh(Che)?, 17
ectelCyctelCpc>e  CucteliCucCpcteliCyc+egCoctefCpeCactehCoc . (18)

If the conditions (10), (12), and (15)—(18) are satisfied we
would have the sequence 4 — B — C, although the transi-
tion may not be perfect as noted in connection with the
requirement Eq. (12) [see Eq. (16) also].

We now turn to computer simulations of the model (7).
The stochastic Glauber dynamics is employed, in which
the probability for the neuron i to take +1 at time ¢ + At
is given by [8,9]

Prob{S;(t+At)==x1}={1xtanh[h,(2)/T]} /2 . (19)

When the temperature of the system T goes to zero, the

Glauber dynamics is reduced to the threshold dynamics
S;(t+At)=sgn{h;(¢)} , (20)

with sgn(x)=1 for x 20 and sgn(x)=-—1 for x <O.
Three patterns A4, B, and C are embedded in the system
consisting of N =400 neurons and the delay 7 is taken to

T

be 3tycr- When three correlations C 5, Cpe, and C ¢
are given, we solve Eq. (13) to obtain X, Y, and Z. We
first produce the pattern, say A, by using N random num-
bers. Then the pattern B is determined by either taking
EB=¢g/ for the X and Y regions and £8=—¢/ for the
remaining region. The pattern C is made in the same
way.

Figure 1 shows the overlap dynamics for 7=0 and the
parameters ¢,=0.6, e£3=0.8, ec=1.0, &} =10,
er=1.9, e£=3.0, C,5,=0.4, C4-=0.5, and C ,=0.2.
Although the pattern B is not fully retrieved in the
intermediate-time region, we see that a transition se-
quence 4 —B —C is realized with the parameters given
above, which satisfy all the requirements listed before.
The asymptotic (t = o) value of each overlap is seen to be
consistent with the correlations in our data. We per-
formed a simulation on a system with three uncorrelated
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FIG. 1. Simulation results for the overlap dynamics. T=0,
C,5=0.4, Cpc=0.5, C4=0.2, €,=0.6, £5=0.8, ec=1.0,
e =1.0,e7=1.9,and e =3.0.

patterns (other parameters are the same as above) and ob-
served that all the overlaps remain constant, showing no
sign of transitions. To see effects of finite temperature,
we first change €} from 1.9 to 2.0, keeping other parame-
ters as in Fig. 1. In this case the requirement Eq. (16) is
not satisfied and, reflecting this, we notice in Fig. 2 that
the sequence retrieval is incomplete. Now we change T
from zero to 0.06 and the result is shown in Fig. 3, which
reveals the familiar fact that fluctuations induced by tem-
perature work positively for retrieval of patterns as long
as it is not too high [8].

Here we give two comments on our model. The first
one is concerned with the robustness of our scheme to the
variation of the Tparameter values. To be concrete we
change e and €l with all the other parameters fixed as
above. First we consider the case T=0. If we set
€L =3.0 (the case of our simulation), ¢} should be in the
range 1.9<eX <2.0 in order to satisfy the conditions
(10), (12), and (15)—(18). On the other hand, when we set
eL=4.0, €I is allowed to be in a little wider range
2.483< eg <2.778. When the temperature is nonzero,
the range of €2 for successful retrieve of the state C be-
comes large. For example, a retrieval process A —-B —C
is confirmed for the case €5 =2.5 and e£=3.0. However
it is remarked that when T is very small (e.g., 0.01) one
must wait a longer time for the retrieve of the state C and
that when T is too large (e.g., 0.3) the state B is skipped,
resulting in the retrieval process 4 —C.

The second comment is on the number of patterns em-
bedded in our system. When a group of correlated pat-
terns in a sequence increases its members (in our simula-
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FIG. 2. Simulation results for the overlap dynamics. €} =2.0
and other conditions are the same as those for Fig. 1.
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FIG. 3. Simulation results for the overlap dynamics.

T=0.06 and other conditions are the same as those for Fig. 2.

tions only three members A4, B,C), the tuning of the pa-
rameters, including the correlations {C,,}, naturally be-
comes severe. However, we can increase the number of
patterns in our system by embedding many groups, each
containing three patterns which are uncorrelated with
patterns belonging to all the other groups. For example,
in a system consisting of 60 neurons, we could embed
three groups of correlated patterns [(4;,B;,C;),
i=1,2,3].

Finally, we consider overlap dynamics theoretically in
the thermodynamic limit N — o with the number of the
pattern, p, kept finite (p /N —0) [10,11]. Our analysis is
based on the notion of sublatice I(x) and sublattice mag-
netization m(x,t), which are due to van Hemmen and
co-workers [10,6]. Given p binary patterns, we have N

vectors &, =(£},...,£0) (i=1,...,N). Introducing the
sublattice by
I(x)={i;&;=x} , x€{—1,1}”, 1)

and the sublattice magnetization by
1

)= (1), 22
m(x,t) 7o) ie?(x)S(t) (22)

with |I(x)| denoting the size of I(x), one can easily verify
that the PSP, Eq. (7), is expressed as

h,'(t)= 2 §§‘pN(x)x#m(x,t)
n,x

X |e,tef 3 pylyly,m(y,t—7)| . (23)
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FIG. 4. Numerical solutions of Eq. (26). The conditions are
the same as those for Fig. 3.
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Here py(x)=|I(x)|/N denotes the weight of the sublat-
tice I(x), which depends on the correlations among the
patterns. Since §;=x for all i in I(x), the PSP depends on
i only through the label x of the sublattice to which i be-
longs. Thus Eq. (23) can be written as

h(x,t)=3 x,py(yly,m(y,t)
Yy

X

v,z
vEp

e, tel 3 pN(z)zvm(z,t—’r)] . (24)

It is well known that in the thermodynamic limit the sub-
lattice magnetization m(x,?) is governed by the following
J

dm (1)

dr = —mu(t)+<xytanh

LTngmv(t)

The second term on the rhs of Eq. (26) consists of 27
terms, since there are 2° possibilities for x. We solve Eq.
(26) with several values of T and the solutions to Eq. (26)
are confirmed to be similar to our simulations. In Fig. 4
we show the numerical results for the overlaps obtained
from Eq. (26). The parameters are the same with those
for Fig. 3. From Figs. 3 and 4 it is seen that Eq. (26)
reproduces our experimental results for N =400 and p =3
excellently.

In this Brief Report we investigated neural networks
with correlated patterns. For the dynamics we proposed
Eq. (7) as a model for sequential association. Concerning
this model we obtain the following results.

e, el S m,t—1)
Vi#Fv)

set of 27 coupled differential equations [6]:

dm(x,t) _

i —{m(x,t)—tanh[h(x,t)/T]} . (25)

Since the overlap m,,(#) is expressed in terms of m(x,1) as
m,(1)=3 p(x)x,m(x,t)
X
={(x,m(x,1)),

we finally obtain a set of p coupled equations for the over-
laps,

> . (26)

r

(1) With the appropriate values for the parameters ¢,
and ez, the sequence was generated and finally the system
settled in a target pattern. Effects of temperature turned
out to be supportive for the retrieval of the sequence.

(2) Our model, Eq. (7), does not itself induce transitions
as stressed in connection with the discussions on Fig. 1.
The model together with the correlations among the pat-
terns make the sequence retrieval possible.

(3) Coupled nonlinear differential equations (26) were
derived for the model (7). Here also, the correlations
among the patterns is implicit. Numerical solutions to
these equations are well correlated with the simulation
results.
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